Mrs. Logan Advanced Math Week 22: January 29 - February 2					
Module 6: Probability and Statistics Topic A: Calculating and Interpreting Probabilities					
	Monday January 29th	Tuesday January 30th	Wednesday January 31st	Thursday February 1st	Friday February 2nd
Lesson	Lesson 1: What is Probability?	Lesson 2: Outcomes of Chance Experiments	Lesson 3: Theoretical Probability	Lesson 4: Multistage Experiments	Lesson 5: Outcomes that are Not Equally Likely
Pages	7-27	29-38	39-56	57-71	73-89
We will...	use a number to represent the likelihood of a given result.	conduct a chance experiement to help us answer chance questions more accurately.	explore the difference between what we predict will happen and what actually happens when conducting chance experiments.	learn a new way to organize and represent all outcomes in the sample space for chance experiments and calculate theoretical probabilities.	learn how to find probabilities when outcomes in a sample space are not equally likely.
Bell Ringer	Spinner Game	Fractions, Decimals and Percents Sprint	Chance Predictions	Sample Space	Equally Likely
Exit Ticket	Likelihood	Emprical Probability	Theoretical Probability	Tree Diagram for Probability	Using Relative Frequencies
I will...	calculate the empirical probability of an event by collecting data from a chance experiment.	determine which outcomes in the sample space an event will occur.	calculate theoretical probabilities of events for chance experiments that have equally likely outcomes.	use tree diagrams to organize and represent the outcomes in the sample space of a multistage experiment.	calculate probabilities of events for chance experiments that do not have equally likely outcomes.
Reminders		Sprint for a grade.			Module 6 Topic A Quiz on Monday 2/5
	7.SP.C.5Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.				
State	7.SP.C.6Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.				
	7.SP.C.7.aDevelop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.				
	7.SP.C.8.aUnderstand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.				
	7.SP.C.8.bRepresent sample spaces for compound events using methods such as organized lists, tables and tree diagrams.				

